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Summary

Machine vision systems are often considered to be

composed of two subsystems: low-level vision and high-

level vision. Low-level vision consists primarily of image

processing operations performed on the input image to

produce another image with more favorable character-

istics. These operations may yield images with reduced
noise or cause certain features of the image to be empha-

sized (such as edges). High-level vision includes object

recognition and, at the highest level, scene interpretation.

The bridge between these two subsystems is the segmen-

tation system. Through segmentation, the enhanced input

image is mapped into a description involving regions with

common features which can be used by the higher level
vision tasks.

There is no theory on image segmentation. Instead, image

segmentation techniques are basically ad hoc and differ

mostly in the way they emphasize one or more of the

desired properties of an ideal segmenter and in the way

they balance and compromise one desired property

against another.

These techniques can be categorized in a number of

different groups including local vs. global, parallel vs.
sequential, contextual vs. non contextual, interactive vs.

automatic. In this paper, we categorize the schemes into

three main groups: pixel-based, edge-based, and region-

based. Pixel-based segmentation schemes classify pixels

based solely on their gray levels. Edge-based schemes

first detect local discontinuities (edges) and then use that

information to separate the image into regions. Finally,

region-based schemes start with a seed pixel (or group of

pixels) and then grow or split the seed until the original

image is composed of only homogeneous regions.

Because there are a number of survey papers available,

we will not discuss all segmentation schemes. Rather than

a survey, we take the approach of a detailed overview.
We focus only on the more common approaches in order

to give the reader a flavor for the variety of techniques

available yet present enough details to facilitate imple-

mentation and experimentation.

Introduction

Machine vision systems are often considered to be

composed of two sub-systems: low-level vision and high-

level vision. Low-level vision consists primarily of image

processing operations performed on the input image to

produce another image with more favorable character-

istics. These operations may yield images with reduced

noise or cause certain features of the image to be empha-

sized (such as edges). High-level vision includes object

recognition and, at the highest level, scene interpretation.

The bridge between these two subsystems is the segmen-

tation system. Through segmentation, the enhanced input

image is mapped into a description involving regions with

common features which can be used by the higher level

vision tasks. On one hand, this procedure should be
sensitive enough to extract those areas of interest in the

image. On the other hand, it should be immune to the

disturbances of irrelevant objects and noise in the system.

Ideally, a good segmenter should produce regions which

are uniform and homogeneous with respect to some

characteristic such as gray tone or texture yet simple,

without many small holes. Further, the boundaries of each

segment should be spatially accurate yet smooth, not
ragged. And finally, adjacent regions should have signifi-

cantly different values with respect to the characteristics

on which region uniformity is based. This situation can be

represented mathematically as follows:

If I is the set of all pixels and PO is a uniformity predicate

defined on groups of connected pixels, a segmentation of

I is a partitioning set of connected subsets or image

regions {R 1, R 2 ..... Rn} such that

n

URl=I, whereRl_'qRm=O Vl_m (1)

1=1

and the uniformity predicate (such as nearly equal gray
level) satisfies

P(RI) = True V1 (2)

P( R1U Rm) = False, _/R 1adjacent to Rm (3)

(R1D Rm) ^ (Rm * O) ^ (P(RI) = True) ::_ P(Rm)
(4)

= True

Because noise destroys homogeneity in a local context, it

is not possible to determine a consistent homogeneity of

larger regions, resulting in fragmented segmentation
results. If noise characteristics are known, however, it is

possible to determine homogeneity on statistical grounds.

In this case, we must drop the consistency criterion given

by equation (4) which states that if a region is homo-

geneous, then all subsets of this region will also be

homogeneous. This means that a region may be deter-

mined to be homogeneous even when subsets of this

region are not.

There is no theory on image segmentation. Instead, image

segmentation techniques are basically ad hoc and differ

mostly in the way they emphasize one or more of the

desired properties of an ideal segmenter and in the way

they balance and compromise one desired property



againstanother.Thesetechniques can be categorized in a

number of different groups including local vs. global,

parallel vs. sequential, contextual vs. non contextual,

interactive vs. automatic. In this paper, we categorize the

schemes into three main groups: pixel-based, edge-based,

and region-based. Pixei-based segmentation schemes

classify pixels based solely on their gray levels. Edge-

based schemes first detect local discontinuities (edges)

and then use that information to separate the image into

regions. Finally, region-based schemes start with a seed

pixel (or group of pixels) and then grow or split the seed

until the original image is composed of only homoge-

neous regions.

Because there are a number of survey papers available
(Sahoo et al., 1988; Weszka, 1978; Haralick and Shapiro,

1985), we will not discuss all segmentation schemes.

Rather than a survey, we take the approach of a detailed

overview. We focus only on the more common

approaches in order to give the reader a flavor for the

variety of techniques available yet present enough details

to facilitate implementation and experimentation.

Pixel-Based Segmentation Schemes

Mode Method

The most widely used segmentation technique is the

mode method which is applicable to images with bimodal

histograms, as shown in figure 1. One mode of the

histogram corresponds to the gray levels of the object

pixels while the other mode captures the gray levels of the
background pixels. It is assumed that a fixed threshold

level exists that separates the background area from the

objects. The threshold level is chosen to be the gray level

in between the two modes using any of a number of

different methods. The two most popular methods are
Gaussian filtering (Jain and Dubuisson, 1992) and Otsu's

method based on discriminant analysis (Otsu, 1979).

o_

_t.

Gray levels

Figure 1: A bimodal histogram. One mode
represents the background pixels while the
other represents the object pixels.

Gaussian _tering algorithm- The simplest segmen-

tation method is based on the Bayes decision theory in

pattern recognition. The gray level histogram of the

image is computed and then two component densities are

extracted (corresponding to the object and the back-
ground) from the mixture density associated with the

histogram. It is commonly assumed that both the

background and the object densities are Gaussian.

Algorithm:

1. Compute the mean ([.t) and standard deviation (c) of

the histogram:

I _ F(i)* i (5)

c = _l_F(i)* (i-l.t) 2 (6)

where F(i) is the histogram value for gray level i (out of L
gray levels) and N is the number of points in the window.

To avoid the problem of division by 0 (for the deviation is

necessarily 0 for 1-pixel regions and regions having

identically valued pixels), a small positive constant can be
added to a.

2. Find a least-squares fit of

P! ---(i-I'tl)2/2_2 + P2 -(i-la*)2/2c2
f(i) = _11 {_ - (7)

to the histogram F(i) by adjusting the parameters P1, _tl,

_1, P2, _2, _2 as follows:

(i) Smooth the histogram by taking a local weighted

average:

F'(i) = F(i - 2) +2F(i - 1) + 3F(i) + 2F(i + 1) + F(i + 2)
9

(8)

On the smoothed histogram, find the deepest valley

v (= lowest value) and use it to divide the histogram into

two parts. Compute initial estimates of P1, I-tl, _1, P2, I-t2,

and a2 on these two parts (for the original histogram
F(i)):

v L

N 1 =EF(i), N2= _F(i)

i=l i=v+l

v L

_tI = F(i) * i, Is2 = -- F(i)* i

"= N2 i=v+l

(9)

(10)



el= _ F(i)* (i- It1)2 (11)

c2= F(i)* (i - It2)2 (12)
i=v+l

g2= F(i)* (i -g2) 2 (13)
_ i=v+l

(ii) Useahill-climbingmethodtominimize:
L

Z [f(i) - F(i)] 2 (14)

i=l

(a) Calculate: val = If(i) - F(i)l for i = deepest valley

(v) chosen in step (i) or (ii.d).

(b) Calculate: left_val = If(i- 1)- F(i- 1)1.

(c) Calculate: right_val = If(i + 1) -F(i + 1)1.

(d) If (left_val _<val), set the estimate for deepest

valley at i- 1.

Else if (right_val < val), set the estimate for

deepest valley at i + 1.

Else deepest valley found at i.

(e) If the deepest valley value was changed in

step (d), reestimate P1, Itl, _1, P2, It2, and a2 using

equations (9-13) and the new value of v. Repeat

steps (a-d).

3. After the parameters of the mixture density have been

estimated, a pixel with gray level x is assigned to the

object if

(15)

The threshold value t is then defined as

PI _-(t-gl)2/2°l 2 P2- -(t-g2)2/2°22

_111_ =_22e (16)

and satisfies:

('_2 123t2+2(it2_O2 12/22Itl . , Itl It2 +,_1_ P2(_I = 0

(17)

Otsu's algorithm- Otsu's method of determining a
threshold in a bimodal histogram is based on discriminant

analysis in which thresholding is regarded as the parti-

tioning of the pixels of an image into two classes C O and

C 1 at gray level t.

Algorithm:

n i = number of pixels at level i (from L gray levels)

N = total number of pixels = n I + n2 + ..- + nL

1. The gray level histogram is normalized and regarded

as a probability distribution:

Pi =ni/N

Pi >0

L

Pi =1

i=l

,

threshold at level k.

3. Calculate the probabilities of class occurrence:

k

w 0 = Pr (Co) = Z Pi w(k)

i=l

L

Dichotomize pixels into two classes CO and C1 by a

w 1 = Pr (C1) = ZPi = 1 - w(k)

(18)

(19)

(20)

(21)

(22)

i=k+l i=k+l

= (itT - It(k))/(1 - w(k))

is the total mean level of the original picture.

_tl= ZiPr(ilCl)= ZiPi/Wl
(25)

i=k+l

4. Calculate the class mean levels:

k k

It0 = __._ i Pr(i IC 0) = Zipi/w0 It(k)/w(k) (23)

i=l i=l

L L

Itl = ZiPr(ilCi)= ZiPi/Wi
(24)

i=k+l i=k+l

= (itT- It(k))I(I- w(k))

where w(k) and It(k)arethezeroethand first-order

cumulativemorncntsofthehistogramup tothekth level

and

L L



5. Calculate class variances:

k

4--

-_t0) 2 Pr(i IC0) = __..,(i- _t0) 2 Pi/W0 (26)(i

i=l i=l

L L

_(i-gl) 2 Pr(i ICI)= _(i-btl) 2 pi/wl (27)

i=k+l i=k+l

6. In order to evaluate the "goodness" of the threshold
k, we can use the following discriminant criterion

measures (or measures of class separability):

-2, o2 _
-- = o v' o2 (28)

where

0 2 = wo o2 + Wl o2 (29)

is the within-class variance,

0 2 = w0(l.t 0 -I.tT) 2 +Wl(g 1 -gT) 2

(30)

= W0Wl (it I _ _t0)2

is the between-class variance, and

L

02 = _ (i- gT) 2Pi (31)

i=l

is the total variance.

Note that X, r,, and r I are equivalent to one another for a

given k because

0 2 + 02 = 02 (32)

7. The problem is now reduced to an optimization

problem to search for a threshold k that maximizes one of

the,,object functions,, (the criterion measures). Note that
o_v and of 3 are functions of threshold level k, whereas
OT2is independent of k. Further, 0 2 is based on second-

order statistics while 02 is based on first-order statistics.

Thus, we use TIsince it is the simplest measure with
respect to k:

_ o__ .2B
_- a2 (33)

Since o 2 is independent of k, we can maximize 1"/by

maximizing o2(k):

o2(k) = [btTw(k)- I't(k)]2 (34)
w(k)[l - w(k)]

Thus, the optimal threshold t is chosen to be that k which

maximizes o2(k).

The threshold determination methods discussed above

work well when the object size is large enough to make a

distinct mode in the histogram, the gray level noise

distribution (intensity noise) is independent of the gray
level, and the noise is spatially uncorrelated. The methods

fail when it is difficult to detect the valley bottom, as in

images with extremely unequal peaks or in those with

broad and flat valleys. Since peaks tend to become wider

and lower with an increasing amount of intensity noise,
some sharpening of the peaks and valleys can be accom-

plished by applying noise reduction preprocessing
procedures.

Another approach to sharpening peaks and valleys is to

weigh the influence of individual pixels and not count

them all equally when calculating the histogram, as in the

gradient-guided methods. Gradient guided histograms

take one of two forms, interior only or boundary only.
The interior-only methods (Mason et al., 1975; Panda and

Rosenfeld, 1978) take into account only pixeis belonging

to either the objects or the background (i.e., those pixels

having low gradient values), disregarding pixels belong-
ing to boundaries where the gray level varies rapidly. This

should yield a histogram with sharper peaks and deeper

valleys. In contrast, the boundary-only methods (Weszka,

Nagel, and Rosenfeld, 1974; Watanabe et al., 1974) take

into account only pixels belonging to boundaries (i.e.,

those pixels having high gradient values). This should

yield a well-defined unimodal histogram, the peak value
of which is a proper constant threshold level.

Finally, instead of computing a 1D histogram of gray
level values, a 2D histogram or "scatter" diagram can be

computed with gray level and gradient as its coordinates.

In this case, a good threshold can be selected using

clusters of points rather than the modes of a histogram
(Katz, 1965; Weszka and Rosenfeld, 1979).

Local methods- Global segmentation techniques such as

the mode method are notoriously sensitive to parameters

like ambient illumination, object shape and size, noise

level, variance of gray levels within the object and
background, and contrast (Taxt et al., 1989). When there

is a large range of variation in gray values from one part
of the image to the other, a single threshold value cannot

be used. Further, objects may legitimately have widely

different albedos and, as a result, an object in one part of

an image may be lighter than the background in another
part. Local methods attempt to eliminate these disadvan-

tages by partitioning the image into subimages, deter-

mining a threshold for each of these subimages, and
then smoothing between subimages to eliminate discon-

tinuities. An example of this group of methods is the

4



Chow-Kanekoadaptivethresholdingmethod(Chowand
Kaneko,1972).Thismethodassignsadifferentthreshold
valuetoeachpixei.
Chow-Kanekoadaptive thresholding algoritlun-

1. Subdivide the image into several subimages.

2. For each subimage, compute the histogram, smooth

it, and determine a threshold using the mode method.

3. Smooth the thresholds among the neighboring

subimages.

4. Determine a threshold for each pixel by interpolation.

For example, to interpolate the 2 x 2 image:

[:,701
into a 4 x 4 image, begin

form a 2 x 4 image:

[_ 567]89 10

Then interpolating in the

4 x 4 image:

[_ 56i]67891087

in the columns direction and

rows direction, form the desired

5. Threshold the image using the threshold value

assigned to each pixel.

The biggest determinant of whether a local thresholding

method produces an acceptable segmentation is the size
of the subwindows. If it is chosen to be too large, the

algorithm will not focus on local properties and will not

perform significantly better than global techniques. On
the other hand, if it is chosen to be too small, the

histograms produced for each subwindow would yield

meaningless statistics since the number of pixels par-

ticipating in the process would be reduced substantially.

Unfortunately, the best method of choosing an appro-

priate window size is by trial-and-error.

Even if window size is chosen well, the grid imposed on

the image may not be coherent with the image contents
and thus the threshold values determined within a

subwindow would be set at arbitrary locations instead of

being placed in truly meaningful positions. Purely local

techniques are blind to trends in the data that are

significantly larger than their element size. Finally,
serious errors can occur if, due to noise and bad lighting

conditions, grid windows placed entirely on object areas

or entirely on background areas, by chance yield

subhistograms that are judged to be bimodal.

Edge-Based Segmentation Schemes

Edge-based segmentation schemes also take local
information into account but do it relative to the contents

of the image, not based on an arbitrary grid. Each of the

methods in this category involves finding the edges in an

image and then using that information to separate the

regions. The most direct method is the detect and link
method in which local discontinuities are first detected

and then connected to form longer, hopefully complete,

boundaries. The disadvantage of this approach is that the

edges are not guaranteed to form closed boundaries and
thus the subsequent thresholding scheme merges regions

which may not be uniform (relative to the uniformity

predicate discussed in the introduction).

An improvement over this method is Yanowitz and

Bruckstein's adaptive thresholding method (Yanowitz
and Bruckstein, 1989). Similar to the detect and link

method, the adaptive thresholding method locates objects

in an image by using the intensity gradient. These edges

are used as a guide to determine an initial threshold level

for various areas of the image. Local image properties are

then used to assign thresholds to the remainder of the

image.

Another improvement of the detect and link method is the

local intensity gradient (LIG) method (Parker, 1991). It is
similar to Yanowitz and Bruckstein's algorithm and

works well in practice. We present each algorithm below.

Yanowitz and Bruckstein's Adaptive Thresholding

Algorithm

1. Smooth the image, replacing every pixei by the

average gray-level values of some small neighborhood
of it.

2. Derive the gray-level gradient magnitude image from

the smoothed original. In discrete images, the gradient is

actually computed as an intensity difference over a small
distance:

G(i, j) = min(I(i, j) - I(i + _i, J + _Sj))
(35)

_i =-1,1, _ij =-1,I

where I is the image being examined and G is the

resulting image consisting of differences.

3. Thin the gradient image, keeping only points in the

image which have local gradient maxima. This should

produce a one-pixel wide edge.



4. Samplethesmoothedimageatthesemaximal
gradient(oredge)points.Thesepointsareassumedtobe
correct.

5. Interpolatethesampledgraylevelsovertheimage.
Theresultisathresholdsurface,witha(possibly)
differentthresholdvalueforeachpixel.

6. Usingtheobtainedthresholdsurface,segmentthe
image.If theoriginalpixelvalueisgreaterthanorequal
tothethresholdvalueatthatlocation,setthethresholded
valueto 1(orwhite).Otherwise,setthevalueto0(or
black).Thus,objectswill besettowhiteandbackground
toblack.

Local Intensity Gradient Method Algorithm

The local intensity gradient method (Parker, 1991) is

based on the fact that objects in an image will produce

small regions with a relatively large intensity gradient (at

the boundaries of objects) whereas other areas ought to

have a relatively small gradient. It uses small subimages
of the gradient image to find local means and deviations.

As in the local mode techniques, these regions must be

small enough so that the illumination effects can be

ignored.

1. Compute a smooth gradient of the image.

• For all pixels in the N x N image (IM1), compute
the minimum difference between the pixel and all eight

neighbors. (See gradient computation in step 2 of

Yanowitz and Bruckstein's algorithm.) Store in IM2.

• Break up IM2 (gradient array) into subregions,
each composed of M x M pixels. Compute the mean

value (QIM) and mean deviation (QDEV) for each

subregion k:

M M
1

IM2[i] [j]QIM[k] = M*M _ _ (38)

i=l j=l

QDEV[k]-- • (IM2[i][j]-QIM[k]) 2 (39)

i--I j=l

• Smooth both QIM and QDE¥. The value of QIM

(and QDEV) at each point is replaced by the weighted

mean of all the neighboring subregions using the
following weight matrix:

0.7 1.0 0.7]
1.0 1.5 1.0

0.7 1.0 0.7

• Interpolate/extrapolate the values of QIM and

QDEV to fill an N x N region again. Linear interpolation

is acceptable. This results in an image containing

estimates of the gradient and deviation at each pixel.

2. Find the object pixels in the gradient image. Object

pixels are defined as outliers in the smoothed image. That

is, pixel [i,j] is an object pixel if IM2[ij] < QIM[i,j] +
3*QDEV[ij]. Otherwise [i,j] is unclassified.

3. After sample object pixels are found, thresholds can

be identified for the remaining pixels. This can be done

using a region growing procedure based on gray levels in

the local surroundings, and begins at pixels that are

known to belong to the object.

• For all unclassified pixels [i,j], select a gray level

threshold by finding the smallest gray level value in an

8-neighborhood (pixel aggregation). If IM 1[i j] is less

than this value, it is an object pixel. Repeat until no more

object pixels are found.

• (Optional) For all still unclassified pixels, compute

a threshold as the mean of at least four neighboring object

pixels (region growing). Repeat until no new object pixels
are found.

• (Optional) For all still unclassified pixels, compute

a threshold as the minimum of at least six neighbors

(region growing). Repeat until no new object pixels are
found.

4. Set all object pixels in IM1 to the value 0 and all

unclassified pixels to a positive value. IM1 now contains

the thresholded image.

Region-Based Segmentation Schemes

Region-based segmentation schemes attempt to group

pixels with similar characteristics (such as approximate
gray level equality) into regions. Conventionally, these

are global hypothesis testing techniques. The process

can start at the pixel level or at an intermediate level.

Generation and filtering of good seed regions of high
confidence is essential. Given initially poor or incorrect

seed regions, these techniques usually do not provide any
mechanism for detecting and rejecting local gross errors

in situations such as when an initial seed region spans two

separate surfaces. These techniques can also fail if the

definition of region uniformity is too strict, such as when

we insist on approximately constant brightness while in

reality brightness may vary linearly. Another potential

problem with region growing schemes is their inherent

dependence on the order in which pixels and regions are

examined. Usually, however, differences caused by scan
order are minor.



Therearetwoapproachesinregion-basedmethods:
regiongrowingandregionsplitting.Intheregion
growingmethods,theevaluatedsetsareverysmallatthe
startofthesegmentationprocess.Theiterativeprocessof
regiongrowingmustthenbeappliedinordertorecover
thesurfacesofinterest.Intheregiongrowingprocess,the
seedregionisexpandedtoincludeallhomogeneous
neighborsandtheprocessisrepeated.Theprocessends
whentherearenomorepixelstobeclassified.Because
initialseedsareverysmall,theprocessingtimecanbe
minimizedbyminimizingthenumberoftimesanimage
elementisusedtodeterminethehomogeneityofaregion.

Inregionsplittingmethods,ontheotherhand,the
evaluationofhomogeneityismadeonthebasisoflarge
setsofimageelements.Theprocessstartswiththeentire
imageastheseed.If theseedisinhomogeneous,it issplit
intoapredeterminednumberofsubregions,typically
four.Theregionsplittingprocessisthenrepeatedusing
eachsubregionasaseed.Theprocessendswhenall
subregionsarehomogeneous.Becausetheseedsbeing
processedateachstepcontainmanypixels,region
splittingmethodsarelesssensitivetonoisethanthe
regiongrowingmethods.Inbothapproaches,their
iterativestructureleadstocomputationallyintensive
algorithms.
Inthelate70s,HorowitzandPavlidisdevelopedahybrid
algorithm,thesplit,merge,andgroup(SMG)algorithm
(HorowitzandPavlidis,1976;ChenandLin,1991),
whichincorporatestheadvantagesofbothapproaches.
BecausetheSMGalgorithmbeginsatanintermediate
resolutionlevel,it ismoreefficientthaneitherthepure
splitalgorithmsorthepuremergealgorithms.Themajor
disadvantage,however,isthattheresultingimagetends
tomimicthedatastructureusedtorepresenttheimage
(aquadtreefor2DimagesoranoctreeorK-treefor
3Dimages)andcomesouttoosquare.

Split,Merge, and Group Algorithm

1. Initialization phase:

Divide the image into subimages using a quadtree
structure, as shown in figure 2. The root of the quadtree

corresponds to the whole image. Each node in the
quadtree has only one parent (except for the root) and

four children (except for the leaves). The four children are

denoted by the quadrant within the parent that they

correspond to (NW, NE, SW, SE). Thus, the image must

be 2n × 2n pixels. The leaves are at node level 0. The root

is at level n. During initialization, the quadtree is built
from the root down to a heuristically set initialization

level Ls. The choice of the initialization level L s can be

Figure 2: (a) Original image split using quadtree.
(b) Quadtree representation of image.

selected in terms of minimizing the expected number of

splits and merges.

2. Merge phase:

If level Ls is homogeneous, evaluate the homoge-

neity of level Ls + 1. If the node is homogeneous, the four
children are cut and the node becomes an endnode.

Repeat until no merges take place or level n is reached

(a homogeneous image).

3. Split phase:

If level Ls is inhomogeneous, split the nodes into

four children and add them to the quadtree. Evaluate the

new endnodes and if necessary, split again until the

quadtree has homogeneous endnodes only.

4. Conversion from quadtree to RAG phase:

* A RAG is a Region Adjacency Graph. It allows

different subimages that are adjacent but cannot be

merged in the quadtree to be merged.

• This phase consists of extracting the implicit

adjacency relations from quadtree endnodes needed to
construct the branches of the RAG. Two neighboring

subimages in the quadtree will have common ancestors,

i.e., nodes in the quadtree on a higher level from which
both endnodes can be reached.

• First, the nearest common ancestor is determined

that connects the current endnode with the neighbor.

Next, the path is mirrored about an axis formed by the

common boundary between the adjacent subimages.

5. Grouping phase:

The now explicit neighbor relationships can be used

to merge adjacent nodes which have a homogeneous

union. Grouping strategies include:

a. Assign the first node of the RAG (corresponding
with the subimage in the top left corner) the status of

seed. The neighbors of the seed are then evaluated on

homogeneity together with the seed. A merge of a

neighbor with the seed produces new neighbors, which
are evaluated. When no more grouping takes place, the



seedisrenderedinactiveandanewseed(thefirst
unprocessednode)isassigned.Thegroupingphaseends
if allremainingRAGnodeshavebecomeinactive.

b. Sequentialgrouping:theseedsarechosenbased
ontheirsizewiththefirstseedbeingthelargestsub-
image,etc.A disadvantageofthisapproachisthat
becauseofthesizeofthefirstseed,theseregionstendto
growbeyondtheir"actual"boundaries,annexingall
fuzzyborderareas.

c. Parallelgrouping:assignanumberofactive
seedsatthestartofthegroupingphase.Nowonlydirect
neighborsofaseedaregroupedif possible.New
neighborshavetowaltforevaluationuntiltheseedis
processedagain.Activeseedsareprocessedsuccessively
untilnoneremain.Thegrowingofseedswillbebounded
byotherseeds.

Groupingstrategy(a)issufficientinpractice.

6. PostprocessingoftheRAGphase:
• If subimagesaretoosmall,mergethemwith their

nearest neighbor. It is difficult to interpret very small

regions as objects and since there is usually a relatively

large number of them, their presence increases the

computational burden on later stages of processing.

• Exploit prior knowledge about the application
problem to improve the segmentation.

Concluding Remarks

The goal of image segmentation is a domain-independent

decomposition of an image into distinct regions which are

uniform in some measurable property such as brightness,
color, or texture. Unfortunately, natural scenes often

contain feature gradients, highlights, shadows, textures,

and small objects with fine geometric structure, all of

which make the process of producing useful segmenta-
tions extremely difficult. We have presented some of the
techniques which attempt to deal with these difficulties.

Although they produce reasonable segmentations in many

situations, at some point local ambiguities and errors

introduced by the segmentation process can only be

resolved by application specific knowledge.

Since the quality of the above segmentation techniques

depends on the type of image the technique is being

applied to, we will end this overview with a summary of
what type of image each technique works best on.

• The mode method is applicable to images with bimodal

histograms where the modes are fairly distinct (well

separated and sharp) and of nearly equal length. It does

not work well if the gray level noise distribution is

dependent on the gray level or is spatially correlated.

• Local methods, such as the Chow-Kaneko method, are

applicable to images in which the ambient illumination

may vary in gray level from one part of the image to

another or when one part of an image may be lighter than
the background in another (as long as the contrast in each

area is adequate). The major disadvantage of local

methods is that it is difficult to choose an appropriate
window size which localizes the illumination variation

yet considers a large enough area to yield meaningful
statistics. Also, even if the window size is chosen well,

the grid imposed on the image may not be coherent with

the image contents and thus threshold values determined

within a subwindow would be set at arbitrary positions

instead of being placed in truly meaningful positions.

• Because the quality of the segmentation depends on the
quality of the edge detector, edge-based schemes work

best on images in which the edges are easily detectable--
that is, images which have good local (5 x 5 pixel area or

less) contrast. They do not work well with images in

which the noise forms well-defined edges.

• Region-based schemes work well for images with an

obvious homogeneity criteria (such as nearly equal gray
level). Also, these schemes tend to be less sensitive to

noise since homogeneity is typically determined

statistically. Their disadvantages are that an initial split-

level must be chosen well (else the technique could be
very slow) and the segmented image tends to mimic the

data structure used to represent the image and is thus too
square.
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